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Almtratt.z-This study applies the theory of characteristics to a one-dimensional transient model, in order to 
analyze the conditions for a choked, two-phase flow. The basic hydrodynamic model analyzed is a two-fluid 
model that includes relative phasic acceleration terms and a nonequilibrium, derivative-dependent exchange 
of mass. 

The analytical resuRs provide an algebraic, choked-flow criterion analogous to that for a single-phase 
flow, except that terms pertaining to relative phase motion and nonequilibrium mass transfer are included. 

This paper discusses the numerical implementation of the choked-flow criterion in a nonhomogeneous 
and uonequih'brium finite difference scheme. The use of a mass-transfer model having a derivative 
dependence is shown to be necessary if self-choking is expected. 

1. INTRODUCTION 
The choked flow of a two-phase mixture is an important phenomenon in many two-phase flow 
situations. In particular, the choked, mass-discharge rate controls the depressurization rate (and 
the resulting energy inventory) in a light water reactor during blowdown conditions posited in a 
loss-of-coolant accident. In the past, homogenous or semiempirical models have been used to 
predict the choked, mass-discharge rate for use with system transient analytical models. 

The present study developed a two-fluid, nonequilibrium, hydrodynamic model embodying 
additional degrees of freedom (in comparison with the homogeneous equilibrium model). This 
analysis developed an associated choked-flow criterion analogous to the well-known transient 
choked-flow criterion discussed in Shapiro (1954) for single-phase flows (that is, a criterion in 
which fluid velocity equals the local speed of sound). In two-phase flows, the speed of sound 
governing choked flow is much lower than the phasic sound speeds, but the exact value has 
been difficult to establish analytically, except for very special assumptions, such as the 
existence of a homogeneous, equilibrium flow. 

The newly-developed choked-flow criterion is based on a two-fluid, analytical model for 
two-phase flow, and a single analytic expression was developed, relating the phasic veocities to 
a mixture sound-speed. The mixture sound-speed is a function of the interphase momentum 
coupling caused by relative acceleration (virtual mass) and the derivative-dependent, nonequil- 
ibrium mass exchange. 

The analytical expression developed can be used to establish the choked, mass-flow rate as a 
function of local flow conditions. These relations are most useful in conjunction with numerical 
calculations of transient, two-phase flows. The use of a choked-flow criterion eliminates the 
need to model the flow process numerically in the immediate vicinity of the choked-flow point. 
Normally, large spatial gradients in the flow properties occur near points of choked flow and 
fine spatial noding is required for accurate resolution. The use of the choked-flow criterion and 
appropriate boundary conditions eliminates the need for such noding, which can be expensive 
in terms of computer storage and computation time. 

Further, if self-choking in a numerical scheme is desired, it is shown that: (a) an appropriate 
derivative dependence is necessary in the interphase, mass-transfer rate; (b) an appropriate 
virtual-mass effect must be included in the interphase drag. 
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2. CHOKED-FLOW THEORY 
Choked flow is defined as the condition wherein the mass-flow rate becomes independent of 

the downstream conditions (that is, that point at which further reduction in downstream 
pressure does not result in change of the mass-flow rate). Basically, a limit occurs because 
acoustic signals can no longer propagate upstream. This limit occurs when the fluid velocity just 
equals the propagation velocity. 

For a differential operator, the path lines for a signal propagation are established from a 
characteristic analysis. A system of first-order, quasi-linear, partial differential equations of the 
form 

A( U)[ OU/ Ot] + B( U)[ OUI Ox] + C( U) = 0 [1] 

is considered. The characteristic directions (or characteristic velocities) of the system are 
defined by Garabedian (1964) and Whitham (1974) as the roots, Ai(i -< n),* of the characteristic 
equation 

det (AA - B) = 0. [2] 

The eigenvalues of the characteristic equation are related to the general Fourier component of 
the solution for the locally linear system. The real part of any root AiR gives the velocity of 
signal propagation along the corresponding characteristic path in the space-time plane. The 
imaginary part of any complex root A/ gives the rate of growth or decay of the signal 
propagating along its respective path. For a hyperbolic system in which all the roots of [2] are 
real and nonzero, the number of boundary conditions required at any boundary point can he 
shown to equal the number of characteristic lines entering the solution region as t increases. If 
the system, [1], is applied in the particular spatial region 0 < x -< L and the boundary conditions 
at x = L are examined, it follows that as long as any Ai is less than zero, some boundary 
information must be supplied in order to obtain the solution. If, on the other hand, all the Ai are 
greater than or equal to zero, then no boundary conditions are needed at x = L and the interior 
solution is unaffected by conditions beyond this boundary. A choked condition exists when no 
information can propagate into the solution re#on from the exterior. Such a condition exists at 
the boundary point x = L when 

Aj = 0 for some j < n [3] 

Ai -> 0 for all i# ./. [4] 

These are the mathematical conditions satisfied by the equations of motion for a flowing 
fluid when reduction in downstream pressure ceases to cause an increased flow rate. It is 
well-known (Shapiro 1954) that the choked-flow condition for single-phase flow occurs when 
the fluid velocity just equals the local sound speed. 

Other possible critical flow criteria, some based on a steady state analysis, are found in the 
literature. For a complete discussion of the relationships that exist among these various criteria, 
the reader should consult Bour~ et al. (1976). 

3. A NONEQUILIBRIUM, MASS-EXCHANGE MODEL 

The basic mass-transfer model proposed in this section assumes that the nonequilibrium, 
mass-exchange rate is, in a sense subsequently to be made precise, proportional to the 

tWhere n is the number of differential equations comprising the system defined by [1] and i designates any of the 
corresponding n roots. 
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equilibrium, mass-exchange rate. The equilibrium, mass-transfer rate is easily derived from the 
mixture-entropy equation for a reversible process, 

O( OtGPGS G + OtLPL SL)l Ot + O( OtGPGI~GS G + OtLPL VL SL )/ OX = O. [5] 

where a is the void fraction, p the phasic density, S the phasic entropy, v the phasic velocity 
and the subscripts G and L represent the gaseous and liquid phases respectively. The densities 
and entropies in [5] are functions of the pressure P only, evaluated along the respective saturation 
curves. Using the phasic continuity equations 

O(aopo)l Ot + O(aopoV6)/Ox = md [6] 

O(aLgL)lOt + O(aLOLVL)/OX = mL e [7] 

and remembering that the mass excahnges mo e and md satisfy 

mL e = -- mG e ' 

we can solve the entropy equation for md obtaining 

, OP ÜP m ~=[aoooSo(_~+v . ~ ) +  ~,,,OP + So, ,8, 

where 

S~ = dS6'(P) dSL~(P) 
dP ' S~= ~ . [91 

Equation [8] gives the equilibrium, mass-exchange rate. Along with this mass exchange there 

Ü(OtLPLSL)/Ot + d(aLPLVLSL)/OX = mffSL + qffl TL. 

where q is the heat transfer rate. The phasic temperatures, although equal for this case, have 
been denoted by Ta and TL for later convenience. Equations [10] and [11], with md and hence 
mL ~ obtained from [8], can be solved for the equilibrium, heat-transfer rates? and give 

, 0 P  
[12] 

qL' = TL'~Lm.S~(-~-t + VL ~-X) • [13] 

tBour~ et al. (1981) has also recently noted that such a heat-transfer rate most be associated with the equilibrium mass 
transfer [8] to give a consistent theory, 

[10] 

[11] 

a(ct6p~S~)/at + o(aap:aSDlax = mdS~ + qdl T~ 

must be a corresponding rate of heat transfer between the phases. To develop a consistent 
mass-exchange model this associated, reversible heat transfer must be known. 

The reversible heat transfer between phases that gives rise to the equilibrium mass exchange 
can be found by considering the entropy equation for each phase undergoing a reversible 
process. In this situation we have 
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To obtain the nonequilibrium, mass-exchange model it is assumed that 

mG = Kma e + mo n 

qo = K q o  e + qo n 

q L = K q L  ~+ qLn. [14] 

K is a function of the state properties and mo e, qo', qL" are given by [8], [12] and [13] evaluated 
at the nonequilibrium state of the flowing mixture, mo n, qo ~, qL ~ are additional nonequilibrium 
exchange rates that are independent of any derivative terms. Because they are independent of 
derivatives, they need not be further specified in order to carry out the characteristic 
analysis--i.e., the C(U) term in [1] has no effect upon the characteristic analysis of system [1]. 

It should be pointed out that the nonequilibrium mass-transfer model proposed above is 
strictly mathematical in nature. It does not relate the mass transfer to the local heat-transfer 
mechanism at the liquid-gas interface. Some surface renewal models for the interphase heat 
transfer have resulted in nonequilibrium mass-transfer formulations that are explicit functions 
of the pressure derivatives. Most nonequilibrium mass-transfer formulations are based upon the 
temperature difference .between the bulk liquid or gas temperature and the saturation tem- 
perature assumed to exist at the interface. These relaxation-type models will not affect the 
critical-flow criterion formulated in section two, because they contain no derivative terms. To 
examine the critical flow phenomenon with such a mechanistic relaxation model for the mass 
transfer would require a detailed dispersion analysis with particular attention given to the 
dominant energy-carrying modes. Such an analysis is not conducted here; instead, we have 
formulated the nonequilibrium mass transfer as a constant fraction of the equilibrium mass 
transfer. The equilibrium formulation represents the limiting case obtained when the thermal 
resistance to heat flux is extremely small. Thus, the question of what effect the resistance has 
on the critical flow can be examined by variation of the constant K. 

4. TWO-PHASE, CHOKED-FLOW ANALYSIS 

The appropriate condition for choked flow of a two-phase fluid was developed by using the 
nonequilibrium, mass-transfer model of section 3. It is to be noted that two limiting eases are 
included in that model: (a) if K = 1, the thermal equilibrium case is obtained; (b) if K = 0, cases 
without mass exchange (frozen) are obtained. These cases bound actual two-phase flows in 
which thermal nonequilibrium exists. 

The nondifferential source terms, C(U), in [1] do not enter into the characteristic analysis, 
and thus do not affect the propagation velocities. For this reason the source terms associated 
with wall friction, interphase drag, and heat transfer are omitted for brevity in the following 
system of equations. The two-fluid model is described by a system of equations that includes: 
the two phasic mass-continuity equations; the two phasic momentum equations; and the two 
phasic entropy equations. This system is 

a(aooo)lat + a(aopovo)/Ox = m o  [151 

O(aLoDlOt + a(aLoLvD/Ox = m~ [161 

a ~ o [  avol at + vc( avd ax)] + ao( aPl ax) 

+ CacaLp[avc,]at + VL(aVdaX) - avdat  - vo(avdox)] 

- ( v m  - vo)mo = 0 [171 
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aLpL[ avd at + vL( avd ax)] + aL( aPl ax) 

+ ca ,  agp[avdat + vs(avLlax)- avdat  - vL(avolax)] 

- (VIL  - V L ) m L  = 0 [18] 

a( aop~S~)l at + a( aop~SovG)l ax - mo$o - q d  To = 0 [19] 

a( aL aL SL)I Ot + a( a w L  SL VDI Ox - mL SL -- q d  TL = 0 [201 

where VtL and vxG represent the average interphase velocity for momentum transfer caused by 
mass transfer and C is an added mass constant. 

The momentum equations include the model for interphase force terms caused by relative 
acceleration discussed in Lahey (1977). These force terms have a significant effect on wave 
propagation velocity and, consequently, on the choked-flow velocity. The particular form 
chosen is frame invarient and symmetric. The coefficient of virtual mass, CaoaLp, is chosen to 
assure a smooth transition between pure vapor and pure liquid. For a dispersed flow, the 
constant (C) has a theoretical value of 0.5, whereas, for a separated flow, the value may 
approach zero. 

Before carrying out the characteristic analysis of [15]-[20], the entropy equations will be 
examined in more detail. When the constitutive relationship [14] are substituted into [19] and [20], 
and all nondifferential terms neglected, one obtains 

aS~ , aSo . . . .  l a P +  a P \  
* vc-'~-~'- = 0 [21] 

a& a& (aP ae) 
at + VL-~ ' - -  K S ~  "~- + VL-~- = 0 [22] 

as the phasic entropy equations. These equations, along with [15] through [18], form the basic 
set of equations which must be analyzed to establish the choked-flow criterion. 

When the state equations 

p~ = pc(P, So), pL = p d e ,  SL) 

are used, the system of governing equations can be written in terms of the six dependent 
variables, ac, P, Vo, VL, So, and SL. 

Thus, the system of equations can be written in the form of [1], where A and B are 
sixth-order, square coefficient matrices. The characteristic determinant corresponding to this 
system, [2], yields the following sixth-order polynominal in A: 

(A - vo)(A - VL)(pC(,~ -- vD(A - vc) + aLp~(A - vo): + aOpL(A - VL) 2 

- -  { [PG(  A -- PC;) - -  P L ( A  -- O L ) ] [ E G ( A  --  06;) + E L ( A  - VL)] 

+ (aLpolL + aOOLIo)(,X -- VL)(,~ -- VO)}[(~ -- VL)(,X -- VO) 

+ (CpadpG)(A - VL) 2 + (CpadpL)(A - vG) 2] 

+ [~/G(~ - vo) + EL(,~ - VL)I[Cp(VL-- V~)(,~ -- V~)(,~ -- VL) 

+ pL(,,X -- VL)2(Vlc -- V~)-- Pa(~ -- VG)2(VIL -- VL)]) = 0. [23] 
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where 

IL= 

Eo= 

EL= 

a_e l + -  a 
ap Iso r' osol~, s~ 

a- -I + 
oP IsL oSLIp 

K a o p o S ~ / (  SL - So)  

K a L p L S U ( S L  - S~).  [24] 

Two roots of [23] are easily seen to be 

A 1 = V G 

A 2 = V L. [251 

These roots are a direct result of the entropy equations [21] and [22]. They were already in 
characteristic form and show the entropy changes associated with the pressure changes along their 
respective characteristic, directions. 

The remaining fourth-order polynomial in [23] can be factored approximately to obtain the 
remaining roots for A, and thus can establish the choked-flow criterion. The factorization is 
presented in appendix A and produces the following results.? The approximate expressions for 

the first two roots are 

A3.4 = [{aLpc + pC/2 +- [ ( p C / 2 )  2 - ozOaLpOPL] 1/2} VO 
-4- {aOp L .T- pC/2 -T- [(pC/2) 2 - OtOOIL~GPL] 1/2 } f)L] 

/ ((aLPo + pC/2) + (aOpL + pC/2)). [26] 

The values for /~3,4 may be real or complex, depending on the sign of the quantity (pC/2) 2 -  

aOaLPOPL. 
The remaining roots are: 

As.6 = v + D ( v o  - VL) +-- a [27] 

where 

v = (aopovo  + a ~ L V L ) / p ,  

a = aH{ [Cp  2 + p (aop  L + OlLPO)]l(Cp 2 + pGpL)} 112, [28] 

] -1 
+ (Pa - p L ) g ( a o p a S *  + a L P L S ~ / ( S L  -- So)  , [29] 

and the complicated analytic expression for D is given in appendix A. 
The general nature and significance of these roots is revealed by applying the characteristic 

considerations discussed in section 2. The speeds with which small disturbances propagate are 
related to the values of the characteristic roots. In general, the velocity of propagation 

tin this factorization we used vm = V~L = 01, with vl = 1/2(v6 + vL)--(Wallis 1969). A second assumption for vb vl = VL 
if mo> 0 and vl = vo if mo< 0, which always makes the mass exchange process dissipative, was also used with no 
significant change in the plots for the roots. 



A CHOKED-FLOW CALCULATION CRITERION 675 

corresponds to the real part of a root, and the growth or attenuation is associated with the 
complex part of a root. The choked-flow condition concerns the velocity with which a 
disturbance propagates at a point fixed in space. Thus, the choked-flow criterion is established 
from examination of the real part of a characteristic root. A choked condition will exist when 
the signal, which propagates with the largest velocity relative to the fluid, is just stationary; that 
is, 

A: = 0 for some j -  6 [30] 

and 

AiR >- 0 for all i~ j.  [31] 

The existence of complex roots for A3.4 makes the initial-boundary value problem ill-posed. 
This problem has been discussed by many investigators, and it is only noted here that the 
addition of any small, second-order, viscous effect renders the problem well-posed (Jackson 
1970). The phenomenon of systems with mixed orders of derivatives and, in particular, of a first- 
order system with the addition of a small second-order term, has been discussed and analyzed by 
Whitham (1974). He has shown that the second-order viscous terms do give infinite propagation 
velocities, but that the bulk of the information is propagated along the characteristic lines 
defined by the first-order system. It is concluded that the ill-posed nature of [15]-[20] can be 
removed by the addition of small, second-order, viscous terms and that these terms will have 
little effect upon the propagation of information. Therefore, the choked-flow criterion for the 
two-phase flow system analyzed here is established from [30]. 

The character of the choked-flow criterion for the two-phase flow model defined by [15]-[20] 
will now be examined. Since the real parts of the two roots A3.4 are between the phase velocities 
vL and vc,, the choked-flow criterion is established from the roots As,6 and [30]. The choked 
criterion is 

v + D(vo  - vD = +- a. [32] 

This criterion can be rewritten in terms of the mass mean and relative Math numbers 

Mv = via, Mr = (vo - vD la  [33] 

a s  

My + DMr = +- 1. [34] 

This relation is very similar to the choked-flow criterion for a single-phase flow. 
The choked-flow criterion, [34], is a function of parameters D and a. In figures 1-5, a is 

plotted as a function of the void fraction ao for a typical steam-water system at 7.5 MPa. The 
limiting values, K = 1, C = oo, correspond to the (known) homogeneous, equilibrium case, 
whereas the other limiting values, K = 0, C = 0, correspond to the (known) stratified frozen 
case. The first case could be expected in a tightly-coupled, dispersed-flow situation and the 
second in an annular separated flow of two components. 

Figures 1-5 show that the virtual mass coefficient has a significant effect upon choked-flow 
models for two-phase flows (Anderson et al. 1977), as does the nonequilibrium, derivative- 
dependent mass exchange. To establish the actual choked-flow rate for nonhomogeneous, 
two-phase flow, the relative velocity term in [34] must be considered. The relative Mach 
number coefficient, D, is plotted in figures I-5. These results show that the choked-flow velocity 
criterion can differ appreciably from the mass mean velocity when slip occurs. 
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Several observations can be made regarding figures 1-5. First, note that both the inertial 
coupling terms and the derivative.dependent mass exchange are responsible for a significant 
depression of the sound speed, a, and hence for greatly reduced critical flow rateswwhen 
compared to models that neglect these terms. 

Also note that the limiting sound speeds on the K = 0, C = 0 curves at ao = 0 and 1 are the 
single-phase liquid and gas sound speeds, respectively. The discontinuities that exist at aG = 0 and 
I for all K curves, except K = 0, are caused by the assumption of a non-zero, mass-transfer rate 
which gives a "bulk" discontinuity in the density/pressure relationships at ao = 0 and 1. This is 
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most significant on the liquid side, where any mass exchange makes the mixture "spongy", relative 
to the stiff liquid response. 

Finally, note from the figures that the variation in the relative Mach-number coefficient is of the 
order unity and hence the velocity that is set equal to the sound speed in [32] can, as a~ varies, 
range from near VG to near vL. Several investigators have found limiting cases for the sound speed, 
a, but the relative velocity effect has not been obtained from the basic equations before. Because of 
the large difference in density for most two-phase flows, the depressurization rate (controlled by 
the critical-flow criterion) is very sensitive to the value of D. Different values of D indicate different 
proportions of liquid or gas leaving the system. The choked-flow criterion was used in the RELAP5 
coder to model the choked-discharge flow in the pipe blowdown experiment performed by 
Edwards & O'Brien (1970). The model was used to provide boundary conditions for the RELAP5 
transient, nonequilibrium, numerical model for system-hydrodynamic calculations. The results 
obtained from the blowdown calculations did indeed show dramatic changes in the depres- 
surization rate as K and C were varied. 

4. A CHOKED-FLOW CRITERION FOR TWO-PHASE FLOWS 

The criterion which is satisfied for a choked flow is established from [34] with the consideration 
that either right or left traveling acoustic waves may satisfy the identity, depending upon the sign of 

tThe RELAPS/MOD0 code and associated documentation (V. H. Ransom et aL, RELAP5/MODO Code Description, 
Vols. 1-3, CDAP-TR-057, May 19/9) are available at the National Energy Software Center, Building 208, Room C-230, 9/00 
South Cass Avenue, Argonne, IL 60439, U.S.A. 
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the flow velocity. The criterion is 

I Wv + DMrl = 1.0. [35] 

When a flow is detected to be choked or is specified to be choked, [35] is used as a boundary 
condition for the flow solution. The relative velocity, in addition to the mass average velocity, 
enters into the choked-flow criterion so that [35] must be solved simultaneously with the equations 
of motion. The relative velocity (v~ - vL) and the degree of thermal nonequilibrinm which exist in a 
flow approaching a point of choked flow will affect the choked-flow rate. 

4.1 Development of the*choked-flow criterion 
The conditions and/or parameters which enter into the choked-flow criterion include all of the 

flow variables, as well as the virtual mass coefficient, C, and the nonequilibrium, mass-transfer 
parameter, K. The flow variables must be established from the solution of the equations of motion 
for the flow preceding the critical flow point (Giot & Fritte 1 97 1). The virtual-mass coefficient was 
established from analytical considerations (Zuber 1964). For highly dispersed bubbly and droplet 
flows, the value of the virtual-mass coefficients is approximately 0.5, and for separated flows, the 
value approaches zero. If interactions between the dispersed phase bubbles or drops are included, 
values for the virtual mass. coefficient have been estimated to be as large as four (Zuber 1964). Thus, 
the coefficient is known within a range. 

The degree of thermal nonequilibrium (i.e. the value of K) which exists in a two-phase flow has 
a large effect on the choked-flow rate. This can be seen in figures 1-5. The degree of nonequilibrium 
which should be included in the choked-flow analysis must be investigated empirically at the 
present time by comparisons to measured data. 

5. CONCLUSIONS AND RECOMMENDATIONS 

A theoretically-based and computationally-efficient model for calculating the choked-mass 
discharge of a two-phase mixture has been developed. The model is independent of a finite 
differencing scheme and can be applied to flow at a sharp edged orifice where fine spatial 
differencing becomes impractical. 

In fluid-flow problems which must be solved using finite difference numerical schemes, it is very 
tempting to assume that the calculations will correctly predict the choked-flow rates for sufficiently 
small mesh spacing and time step. This would in fact be the case ff the differential equations 
correctly describe the physics of the flow process and if consistent difference operators are used. In 
the case of two-phase flow, however, the correct form for the differential equations is the subject of 
considerable debate (Gidaspow 1974). As example of this controversy, the virtual-mass terms are 
debated, both about whether they should be included and about their proper form. These terms 
have a large effect on the choked-flow rate, as has been shown herein. A numerical calculation in 
which these terms are omitted would yield results approximating the choked-flow analysis for a 
value of the virtual mass coefficient, C, equal to zero. The corresponding difference in choked-flow 
velocity is illustrated in figures 1-5. 

The magnitude of the virtual-mass term depends upon the spatial and temporal derivatives, and 
is a small part of the interphase drag for situations in which long wave-length phenomena 
predominate, such as steady flow in a smooth duct. However, when short wave-length phenomena 
are important, such as at a point of choked flow, then the virtual-mass terms can predominate. 
Hence, it may be possible to neglect these terms in a nonchoked-flow calculation, but it is essential 
that they be included in the numerical scheme for a region of choked flow. 

Similar remarks can be made concerning the modeling used for the mass transfer in a two-phase 
system. The sound speed for K = 0 is for a system having a mass-transfer model that failed to 
include differential terms, while the sound speeds shown for K #  0 are for systems with differential 
mass-transfer terms. These derivative terms account for a large reduction in the choked-flow 
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velocity. The experimental data from Wallis (1969) show a choked-flow velocity very close to the 
equilibrium model predictions. Here again, any numerical scheme used to predict the critical-flow 
rate directly must contain a mass-transfer model that includes derivative terms similar to those of 
the equilibrium model. 

A further note relative to numerical, choked-flow calculations concerns the fact that any such 
calculations for finite spatial and temporal increments are only an approximation of the original 
differential system. As a result of truncation errors, the numerical solution is actually the solution 
to an augmented differential system. The additional terms are equivalent to first-order derivatives 
having coefficients containing the spatial and temporal increments. Hence, for finite increments, 
the numerical solution for choked flow will correspond to a system having additional first-order 
derivatives present. In order to correctly calculate choked-flow directly, it is important to ensure 
that these truncation terms are small, relative to the correct, first-order, derivative terms in the 
basic differential equations. This convergence can be achieved in practice by choosing suc- 
cessively smaller computing increments (time and space), so that the calculated choked flow 
becomes constant. 

The alternative approach to direct, numerical, choked-flow calculation is the use of a 
choked-flow criterion such as the approach developed herein. This approach has been used 
extensively in the case of single-phase flows. In general, the choked-flow criterion, [34], is used 
both as a criterion to determine if a flow is choked, and as a boundary condition when the flow is 
choked. The advantage of this approach is that the calculation is less sensitive to the computing 
interval, so that large spatial increments can be used with attendant savings in computational time. 
In addition, one is assured that the correct choked-flow velocity is specified, independently of the 
finite differencing algorithm. 
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A P P E N D I X  A 

Factorization o f  characteristic polynomial  

The fourth-order polynomial obtained as the solution to the characteristic analysis must be 
factored in order to obtain the choked-flow criterion. This can only be carried out approximately 
for the general case of unequal phase velocities. However, some useful insight can be obtained by 
first considering the case of equal phase velocities (that is, va = vL = vo). For this case, [23] of the 
main text can be factored exactly, with the following results: 

A3.4 = Vo [AI] 

As.6 = Vo -+ a [A2] 

where the sound speed, a, is defined as before by [28]. Hence, for small values of vo - vL, two of the 
roots are expected to be near the phasic mixture velocity, v, and thus the factors A - vo and A - vL 
will be of the order vo - vL. This being the case, it is possible to obtain a close approximation for 
these two roots by neglecting the fourth-order factors in A -  vo and A -  vL relative to the 
second-order factors. The remaining two roots are expected to be of the order v -+ a, and the factors 
A - vo and A - vL to be of the order ± a (that is, not small). The roots A3.4 may be interpreted 
physically as the paths along which kinematic effects propagate at the fluid velocity, while the roots 
As.6 are the paths along which acoustic phenomena propagate at speeds v ± a. 

Using the above information, the approximate factorization of the fourth-order polynomial, 
[23] of the text, may now be described. Since the slower kinematic roots (corresponding to [A 1 ]) are 
near vL and Vc,, the factors A -  vo and A -  vL are small for these roots. Therefore, when 
approximating these roots, the fourth-order factors in A -  vL, and A -  vG relative to the 
second-order factors in A - vo and A - vL can be neglected. This produces the following quadratic 
polynomial for the kinematic roots: 

pC(A - vz)(;t - vD + aLpc(,~ - vo) 2 + ctopL(X - vD 2 = 0 [A31 

with corresponding solutions as given in the text by [26]. 
Note that these roots do in fact lie between vL and Vc,, thus confirming the assumption that the 

factors A - vo and A - vL are small. 
If these were exact roots of [23], then [23] could be divided by them to obtain an exact quadratic 

polynomial that would lead directly to the remaining acoustic roots. Instead, division using the 
approximate roots is performed. The resulting polynomial is then approximated by using the 
identities 

va = v + at.PL(va - vL) [A4] 
P 

vL = v - a a P a ( v  a - vL)  [AS] 
P 

and by neglecting all the terms in vG - vL that are second-order and higher. This leads to a quadratic 
containing, at most, terms linear in v a -  vL and which can be factored exactly to yield 
approximations for the remaining two roots of [23]. The roots are 

A5,6 = v + D ( v a  - v L ) ±  a t  

tAssuming that the relative velocity, va - vL, is not large. 

[A6] 
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where v, a, and an are as defined by [27]-[29] and the complicated analytic expression for D is 

defined by 

4 5 
- ~ Yi + ~ XiZi - Bl a 2 

Z5 = - 4aopd p 

and the terms Eo, EL, Io and IL are defined by [24]. 
In the formula for D we have assumed that the interface velocity, vl, was equal to 112 (VL + VO). 

where 

B = C(aLPL -- aoPo) + 2pLP~(aL 2 -  a~) /p  

X1 = p o E a C p a d  pL 

)(2 = paEo+ A Cpad OL 

3(3 = A + poEoCpa~J po - pL EL Cpad pL 

X4 = ACpaJp~  - pLEL 

X 5 = - -  ~LELCpadpG 

A ~ (pGEL -- pLEG) + ~LPGIL + ~GpLIG 

Y~ = 0.S poEo 

Y2 = CpE~ + 0.SpiEL 

Y3 = CpEL + 0.5pLEo 

Y4 = 0.SptEL 

ZI = 4aLplJ p 

Z2 = 3aLPL] p -- aopc,] p 

Z3 = 2aLPL/ O -- 2aopc,/ p 

Z4 = aLPL] p -- 3ac, p d  p 

D = i=1 i=1 .. [A7] 
5 

21 x, 


